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Long-range order (lro) is established with the help of a generalized Peierls
argument for non-equilibrium lattice systems of one-dimensional (linear) inter-
acting oscillators whose equation of motion (for a finite number of them) is the
Smolouchowski equation for the density of a probability distribution. Inter-
action is mediated through the pair nearest-neighbor quadratic translation
invariant potential. The initial density is Gibbsian with a potential energy
satisfying the Ruelle superstability and regularity conditions.
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bounds.

1. INTRODUCTION

Dynamics in the system of finite number of Brownian linear oscillators,
whose one-dimensional coordinates qx are indexed by a site x of the
d-dimensional lattice Zd, interacting via a pair potential (qx − qy)2, is
governed by the Smoluchowski equation for the density r0(qL; t) of a
probability distribution, qL=(qx, x ¥ L) ¥ R |L|, L is a hypercube in Zd (|L|
is the cardinality of L).

“

“t
r0(qL; t)= C

x ¥ L

“x{“x+b “xUg(qL)} r0(qL; t), (1.1)

Ug(qL)= C
x ¥ L

u0
g(qx)+ C

Ox, yP ¥ L

(qx − qy)2, (1.2)



where b is the inverse temperature, “x= “

“qx
,

u0
g(q)=gg−nq2n − q2, n ¥ Z+, n > 1, g > 0,

Ox, yP means that x, y are (n-n) nearest neighbors and g is the parameter
that determines the depth of two symmetric wells of the potential u0

g. This
parameter can be interpreted as the strength of the n-n interaction: rescal-
ing the oscillator variables qx Q `g qx and the time t Q g−1t we’ll derive the
Smoluchowski equation with the rescaled potential energy U(qL)=Ug(`g qL)
considered in refs. 1 and 2. After the rescaling the time t Q bt we’ll obtain,
also, the Smoluchowski equation with the diffusion coefficient b−1, i.e.,
with the coefficient before the first term in the bracket in (1.1), and the
second term in the bracket without the coefficient b.

We deal with the free boundary condition. The choice of other
boundary conditions may be an obstruction for proving an existence of the
lro (see remarks in ref. 2).

A simple check shows that the Gibbs distribution exp{ − bUg(qL)} is
the stationary state for (1.1) and that the law of conservation of probability
holds for it. It is expected that stationary states for the considered non-
equilibrium systems are Gibbsian.

(1.1) is the forward Kolmogorov equation for the stochastic equations

q̇x(t)=−b “xUg(qL(t))+ẇx(t), x ¥ L

where ẇx(t) are independent processes of white noise.
Solutions of the infinite system were proven to exist in ref. 3. A con-

vergent (high temperature) cluster expansion for the associated measures
corresponding to Gibbsian initial measures is proposed in ref. 4. In ref. 5
the nonequilibrium systems are treated as Gibbs path systems (see also
ref. 6) and an absence of phase transitions is proven if in the initial Gibbs
state they don’t occur.

Let’s consider the nonequilibrium correlation functions assuming that
initial correlation functions are Gibbsian and generated by the potential
energy U1

rL(qX; t)=Z−1
L F r0(qL; t) dqL0X, ZL=F r0(qL; t) dqL,

where the integrations are performed over R |L0X| and R |L|, respectively,

U1(qL)=oUg(qL)+U0(qL), U0 \ 0, o > 1
2 (1.3)

and U0 is a translation invariant function which depends on squares of
differences of variables.
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After the substitution

r0(qL; t)=e−
b

2
Ug(qL)

k(qL, t)

the following heat equation for k is obtained

“

“t
k(qL; t)= C

x ¥ L

“
2
xk(qL; t)+bV(qL) k(qL; t), (1.4)

V(qL)=
1
2

C
x ¥ L

5− “
2
xUg(qL)+

b

2
(“xUg(qL))26 .

The solution of an initial value problem for (1.4) is given by the FK
formula. (7) As a result

rL(qX; t)=F rL(wX) PqX
(dwX), rL(wX)=Z−1

L F e−bU(wL)P0(dwL0X),
(1.5)

where w=(q, w) ¥ R × W=Wg, W is the probability space of one-dimen-
sional Wiener paths, starting from the origin, w ¥ W, Pq(dw) is the Wiener
measure, P0(dw)=dq Pq(dw),

ZL=F e−bU(wL)P0(dwL), P0(dwX)= D
x ¥ X

P0(dwx).

U(wL)=1
2 Ug(qL) − 1

2 Ug(wL(t))+U1(wL(t))+F
t

0
V(wL(y)) dy.

(1.6)

So, we have to deal with the Gibbs path system characterized by the
potential energy U(wX)

U(wL)= C
x ¥ L

u(wx)+ C
Ox, yP ¥ L

j(wx, wy)+UŒ(wL), (1.7)

where O., .P means nearest neighbors,

UŒ(wL)=U0(wL(t))+b F
t

0
VŒ(wL(y)) dy,

VŒ(qL)=4 C
X3 ¥ L, |x1 −xj|=1

(qx1
−qx2

)(qx1
−qx3

), X3=(x1, x2, x3),

u(w)=
1
2

u0
g(q)+1o−

1
2
2 u0

g(w(t))+
1
2

F
t

0

5−“
2u0

g(w(y))+
b

2
(“u0

g(w(y))26 dy,
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j(w, wŒ)=51
2

(q − qŒ)2+3o −
1
2
4 (w(t) − wŒ(t))26+b F

t

0
f(w(y), wŒ(y)) dy,

f(qx, qy)=(“u0
g(qx) − “u0

g(qy))(qx − qy).

Here we took into account that every internal (boundary) lattice site
has 2d(2d − 1) nearest neighbors (“L is the boundary of L) and the follow-
ing relations

“xUg(qL)=“xu0
g(qx)+2 C

y ¥ L, |x − y|=1
(qx − qy)

C
x ¥ L

“
2
xUg(qL)= C

x ¥ L

“
2
xu0

g(qx)+4d |L| − 2 |“L|.

C
x ¥ L

(“xUg(qL))2= C
x ¥ L

(“xu0
g(qx))2+ C

Ox, yP ¥ L

f(qx, qy)+VŒ(qL),

Prime will not denote differentiation in what follows. The condition
o > 1

2 guarantees that that U satisfies the Ruelle superstability bound.
The interaction part of the potential energy is the sum of the transla-

tion invariant positive (ferromagnetic) term UŒ, the ferromagnetic term,
generated by the pair positive potential j+=j − j− and the non-ferro-
magnetic term expressed through the pair non-positive potential j−

j−(w, wŒ)=b F
t

0
f(w(y), wŒ(y)) dy,

The potential energy U has ferromagnetic ground states if o \ 1
2 , but

we can not prove that nonequilibrium ‘‘spin’’ averages satisfy the first
Griffiths inequality. This inequality holds in some nonequilibrium spin
systems (lattice systems of interacting markovian processes). (8)

Our goal is to prove an existence of the ferromagnetic lro (long-range
order) in our systems for sufficiently large g.

The proof follows all the steps of our previous papers (1, 2) devoted to
an existence of the ferromagnetic lro in classical and quantum Gibbs
oscillator systems in which interaction potential energies are translation
invariant. It is possible since reduced density matrices of the quantum
systems are expressed in terms of correlation functions of Gibbs path
systems with closed paths (see (3.1) and (3.2) in ref. 2).

Our method in refs. 1 and 2 is a general version of the Peierls argument
based on the Ruelle superstability bound for the correlation functions. This
method is developed here by an application of a new superstability bounds
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(1.12), (2.4) for correlation functions in which the ferromagnetic part of the
path ‘‘potential energy’’ plays a significant role.

By O ·PL, O ·P we’ll denote the average associated to the correlation
functions rL and their thermodynamic limit r, respectively

OFXPL=F FX(qX) rL(qX; t) dqX, OFXP=F FX(qX) r(qX; t) dqX.

The generalized Peierls argument is formulated in the following lemma
(see ref. 9).

Lemma 1.1. Let q+(q−) be the characteristic functions of positive
half-line (negative half-line), q+

x (qL)=q+(qx), q−
x (qL)=q−(qx), sx=sign qx.

If the following contour bound holds

7 D
Ox, xŒP ¥ C

q+
x q−

xŒ
8

L

[ e−E |C|, (1.8)

where C is a set of nearest neighbors, E is independent of L and sufficiently
large then there exist positive numbers a, aŒ such that

Oq+
x q−

y P [ aŒe−aE. (1.9)

Moreover, if the average is invariant under the change of signs of variables
then the ferromagnetic lro occurs in the system, i.e.,

OsxsyP > 0. (1.10)

(1.10) follows in a simple way from (1.9) if one takes into account that
q+(−)

x =1
2 [1+(−) sx]. As a result

4Oq+
x q−

y PL=1+OsxPL −OsyPL −OsxsyPL.

So, for the systems invariant under the transformation of changing signs of
the oscillator variables OsxPL=OsyPL=0 and the following equality is true

OsxsyPL=1 − 4Oq+
x q−

y PL.

(1.10) holds if the average in the r.h.s.in the equality is strictly less than 1
4 .

But this is guaranteed by the large E and (1.9).
The condition of invariance of the average, determined by the cor-

relation functions rL(qL; t), under the change of signs of variables is
guaranteed by our choice of Ug, the initial correlation functions and
invariance of the Wiener measure under the transformation (the change of
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a sign of an initial coordinate is equivalent to the change of a sign of a path
in the Wiener integral).

We derive the contour bound with the help of the following bound
which is a simplified version of a bound from refs. 1 and 2

D
Ox, xŒP ¥ C

q+(qx) q−(qxŒ) [ exp 3−
b

2
[e0 |C| − Qg, C(qL)]4 , (1.11)

where e0 is the minimum for u0
g, e0=(gn)− 1

2(n − 1) g
n

2(n − 1), and

Qg, C(qL)= C
Ox, xŒP ¥ C

Qg(qx, qy),

Qg(qx, qy)=e−1
0 [(qx − qy)2+4

3 (|q2
x − e2

0 |+|q2
y − e2

0 |)].

The idea to apply the analogue of (1.11) goes back to ref. 10. The presence
of the second term in the expression for Qg hints that one has to control
fluctuation of oscillators around the minima of u0

g in order to have the lro.
The corner stone of our method is the following non-trivial super-

stability bound

rL
g (wX)=rL(wX+e0) [ exp 3 |X| Eg(g) − b 5U+(wX)+ C

x ¥ X
u+(wx)64

(1.12)

where U+ is the part of U generated by the pair ferromagnetic potential,
i.e., the first two terms in the expression for j,

sup
g \ 1

e−l
0 Eg(g) < ., 0 < l < 1; sup

g \ 1
(ln I −

g(g) − sbe0) < ., s ° 1,
(1.13)

and

I −

g(g)=F e−b[u+(w) − Q0
g(w)]P0(dw), Q0

g(w)=
2

3e0
|q(q+2e0)|,

Substituting (1.11) into the left-hand side of (1.8), taking into account the
translation invariance of the measure P0 and (1.12) we conclude that (1.8)
holds with

E=
b

2
e0 − 2(Eg+ln I −

g(g)), e0(g) > 2. (1.14)
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From (1.13) and (1.14) it follows that E in Lemma 1.1 can be made arbi-
trary large by tending g to infinity. Hence, the lro occurs for our systems
for sufficiently large g.

The coefficient e−1
0 before the translation invariant part of Qg controls

the strength of the pair ferromagnetic n-n interaction in (1.2) as it follows
from (1.12). Our main result still holds if the strength, i.e., a coefficient
before the term, decreases for growing g not so fast as e−1

0 (after the rescal-
ing described above the strength still grows in g).

The paper is organized as follows. The main Theorem 2.1 is for-
mulated in the next section where (1.12) is proven with the help of
Theorems 2.2, Corollary 2.1 and Lemma 2.1. Theorem 2.1 is a generaliza-
tion of the Ruelle superstability bound with properties described in
Corollary 2.1 and Lemma 2.1.

Lemma 2.1, Theorem 2.2 and Lemma 1.1 together with (1.11) and
Corollary 2.1 are proven in the third, fourth and fifth sections, respectively.

2. MAIN RESULT

We’ll use the following notations

W(qX1
; qX2

)=U(qX1 2 X2
) − U(qX1

) − U(qX2
),

||Y||1=C
x

|Y(x)|, |x|= sup
v=1,..., d

|xn|,

where the summation is performed over Zd. If U contains an index then the
same index will appear in W.

We require that U0 satisfies the following regularity condition (11, 12)

|W0(qX1
; qX2

)| [ 1
2 C

x ¥ X1, y ¥ X2

Y0(|x − y|)[q2
x+q2

y]. (2.1)

Theorem 2.1. Let the potential energy of the non-equilibrium
system of Brownian linear oscillators with the equation of motion (1.1) be
given by (1.2) and d > 1. Let, also, the initial distribution of the system be
Gibbsian with the potential energy U0 given by (1.3) and (2.1), where Y0 is
a positive function with a finite support independent of g. Then for b > 0
and for sufficiently large g the ferromagnetic lro occurs for the spins sx, i.e.,
OsxsyP > 0.

It is expected that there is a critical value gc below which there is no
lro for the given b and a phase transition occurs. Such the critical value
should be calculated approximately from the inequality aŒe−aE \ 1

4 . The
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proof of the phase transition demands a construction of a convergent high-
temperature cluster (polymer) expansion which implies an exponential
decrease of correlations as in ref. 13. In ref. 14 we wrote down the polymer
expansion for quantum oscillator Gibbs systems of linear oscillators with
ternary interaction, treating them as Gibbs closed path systems, and proved
its convergence at high temperatures. The same result (to be published) is
established by the author for the diffusion Gibbs path system (1.5) and
(1.6). It can be shown that the condition o > 1

2 is sufficient for the existence
of the thermodynamic limit in the high-temperature phase for the diffusion
Gibbs path systems. We do not attribute any physical meaning to it.

To prove Theorem 2.1 we have only to derive (1.12). This will be done
with the help of a generalization of the Ruelle superstability bound which is
based on application of the superstability and regularity conditions for a
potential energy.

We’ll deal with the measure space (Wg, P0) that contains subsets
Br, r > 0, such that Br … Bs for s > t, P0(Br) < .. In the case of the non-
equilibrium systems we put Br={w: |w(t)| [ r}. Let wX ¥ (Wg) |X|, X … Zd,
|X| < .. A measurable function U(wX) is required to satisfy the supersta-
bility and regularity conditions

U(wX) − U+(wX) \ C
x ¥ X

u−(wx), (2.2)

|W(wX1
; wX2

)| [ 1
2 C

x ¥ X1, y ¥ X2

Y(|x − y|)[v(wx)+v(wy)],

X1 5 X2=”, v \ 0 (2.3)

where

U+(wX)= C
x, y ¥ X

j+
x, y(wx, wy), j+ \ 0,

and all the functions are measurable. The following integrals are necessary
attributes of the superstability bound since its main constant c0 depends on
them

ū(w)=U(w)+||Y||1 v(w), Ir=e−1
2

b ||Y||1 v̄rI0, I0=F
Br

e−bū(w)P0(dw),

I(e)=F exp{ − b[u−(w) − 3ev(w)]} P0(dw), v̄r=ess sup
w ¥ Br

v(w).
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Theorem 2.2. Let rL(wX) be given by the second equality in (1.5),
the function U satisfy (2.2) and (2.3). Let’s put k(x)=|x|k, lj=(1+2a) j

and require that

||kY||1 [ ., ||Y||1 [(1+3a)2(d+k) − 1] [
e

2
,

where 0 < 3e < 1. Then the following superstability bound is valid

rL(wX) [ exp 3−b 5U+(wL)+ C
x ¥ X

(u−(wx)−3ev(wx))6+|X| c0(e, I−1
r , I(e))4,

(2.4)

and there exist the positive numbers c0, t such that for Vj=(1+2lj)d the
following representation is true

c0(e, zŒ, z)=c0+ln(1+tzŒ+f(e, zzŒ)), f(e, z)= C
j \ 0

e−ek(lj) Vj(2z)Vj.
(2.5)

Moreover, if Y has a finite support then c0 does not depend on e and t

is bounded in e.
The bound (2.4) differs from the Ruelle bound by the presence of

e−bU+
, more general k and the condition for a (k=1 in the Ruelle condi-

tion) and, also, less general lj (see the beginning of the fourth section).
c0 is determined by the equality in (4.12) and its dependence on e is

given by the conditions of Lemma 4.1.
The exponential term appears in the bounds of the correlation func-

tions of classical oscillator systems in the high-temperature phase if one
applies the technique of the Kirkwood-Saltsburg relations proposed in
ref. 13. The similar term is present in the superstability bound in ref. 15 for
classical oscillator ferromagnetic systems with a special pair potential.

Our k enables to control an asymptotics of c0 in e needed for provid-
ing the right asymptotics of Eg(g) in g after putting e=e−2

0 . It turns out
that c0 grows very slowly for the vanishing e for fixed zŒ, z in (2.5) only for
short range interactions. The character of the asymptotics is depicted in the
following corollary.

Corollary 2.1. Let the conditions of Theorem 2.2 be satisfied and
k \ d

(a) then the following inequality is true

lim
e Q 0

e
2d

k+d ln f(e, z) [ 2d 2k+d
k+d (ln 2z)2
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(b) Moreover, if Y has a finite support then the following inequality
holds

lim
e Q 0

e
2d

k+d c0(e, z, zŒ) [ 2d 2k+d
k+d (ln 2zzŒ)2.

Since the measure P0 is translation invariant the correlation functions
rL

g are expressed in terms of the potential energy Ug

Ug(wX)=U(wX+e0) − |X| ou0
g(e0).

The significant fact is that Ug has a limit when g tends to infinity (see (3.5)
and (3.6)).

It is not difficult to prove (2.2) and (2.3) for Ug and to calculate all the
functions in these equalities. It is done in the next section. If Y0 has a finite
support that the same is true for Y.

The next lemma reduces a proof of (1.12) to a determination of the
asymptotics of c0 in e=e−2

0 for fixed z, zŒ in (2.5) and allows to apply
Theorem 2.2 and Corollary 2.1 for proving Theorem 2.1 via formulas
(1.12)–(1.14).

Lemma 2.1. Let u−, v be the functions in the superstability and
regularity conditions (2.2) and (2.3) for Ug and ūg(w)=Ug(w)+||Y||1 v(w).
Let, also, the integrals I(e−2

0 ), Ir(e−2
0 ), associated to Ug, be denoted by

Ig(g), Igr(g), respectively, and

u+(w)=u−(w) − 3e−2
0 v(w).

Then the functions (Igr)−1 (g), Ig(g), e−sbe0I −

g(g), where s is an arbitrary
small number, are bounded in g. For short-range interaction k may be
arbitrary. Thus, Lemma 2.1 and Corollary 2.1 give the following final
result.

Corollary 2.2. Let the conditions of Theorem 2.1 be satisfied, c0,
k > 3d and u+ be determined in Theorem 2.2 and Lemma 2.1, respectively.
Let’s put

Eg(g)=c0(e−2
0 , Igr(g), Ig(g)), (2.6)

then the inequalities in (1.12) and (1.13) are true with l= 4d
k+d .

This corollary, (1.12)–(1.14) and arguments from the previous section
prove Theorem 2.1
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The most important properties of the functions ug, u−, v, Q0
g that allow

to prove Lemma 2.1 are:

(a) the first function converges to a sum of functions q2, w2(t),
> t

0 w2(y) dy with positive coefficients when g tends to infinity;

(b) u− differs from ug only by a constant independent of g;

(c) e−2
0 v is bounded for |w(t)|=2e0 and Q0

g(q) is bounded in a
neighborhood of − 2e0.

Item (b) is a consequence of the superstability bound (3.1) for V(qX).
Without it one can only prove an existence of the lro on the time interval
[0, e−2

0 ].
We estimate the integrals Ig, I −

g with the help of the inequality proven
in the next section

F dq F0(q) F Pq(dw) exp 3F
t

0
v(w(y)) dy4 F0(w(t)) [ ||e tv||. ||F0||. ||F0 ||1,

(2.7)

where || · ||. is the norm of Ł., i.e., the space of bounded functions.

Remark 2.1. Writing this paper we found out a flaw in arguments
in refs. 1 and 2: one of them is based on the assumption of boundedness of
the integral

F e−b[u0
g(q+e0) − u0

g(e0)]eae − 2s
0 q2l

dq, a > 0, 0 < l < n,

where the integration is performed over R, for s < l. But the integral is not
bounded in g \ 1 since the second exponent is not bounded in g at infinity
in the neighborhood of the critical point − 2e0 (the Lebesque dominated
convergence theorem is not applicable in spite of the fact that the function
under the sign of the integral converges to the integrable function in the
limit of the infinite g). The proof of Lemma 2.1. is based on boundedness
of the integral for s \ l which is possible only after application of the new
version of the Ruelle superstability bound (2.4). The analogs of Theorem 2.2
and Corollary 2.1 hold also for classical and quantum oscillator systems
considered in refs. 1 and 2. The mentioned flaw can be eliminated with
their use without difficulty only for finite-range interactions.

The obstruction for the generalization of Theorem 2.1 and its analogs
for the Gibbs classical and quantum linear oscillator systems for infinite-
range interactions is the dependence of c0, t on e (c0 is determined by the
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first term in (4.12)). The first two parameters grow faster then e0 if e=e−2
0 .

This obstruction may be overcome only if a generalization of the Ruelle
arguments, which yields a weaker growth of c0, t in e at zero, is found.

3. INEQUALITIES FOR Ug AND LEMMA 2.1

In this section we obtain expresions for the functions u−, v in (2.2) and
(2.3) for Ug and prove Lemma 2.1.

The derivation of the superstability bound (2.2) relies on the super-
stability bound for the function V

V(qX) \ C
x ¥ X

V(qx) − 2(n − 1) |X|, (3.1)

where V(qx) is calculated from the expression for V(qX) using the equality
Ug(qx)=u0

g(qx).
This superstability condition for V is proven by induction. Indeed, let

x ¨ X and Xx be the set of the n-n of x in X and |qx | \ |qX |. Then

V(qx 2 X) \ V(qX) − b C
y ¥ Xx

(qx − qy)2

−
1
2

“
2u0

g(qx)+
b

4
5“u0

g(qx)+2 C
y ¥ Xx

(qx − qy)6
2

.

If qx \ e0 then “u0
g(qx) \ 0 (see (3.6)) and

5“u0
g(qx)+2 C

y ¥ Xx

(qx − qy)6
2

\ [“u0
g(qx)]2+4 5 C

y ¥ Xx

(qx − qy)6
2

Hence, (3.1) holds even without the last term in its right-hand side.
If qx [ e0 then (see (3.8))

V(qX 2 x) \ − 1
2 C

y ¥ X 2 x
“

2u0
g(qy)

\ − 1
2 C

y ¥ X 2 x
“

2u0
g(e0)=−2(n − 1)(|X|+1), |qX 2 x | [ e0.

The case qx [ 0 is mapped into the case qx \ 0 by changing signs of all
variables.

As a result

V(qX+e0) \ C
x ¥ X

V(qx+e0) − 2(n − 1) |X|. (3.2)
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From (3.2) we derive the superstability bound (2.2) for Ug with

u−(w)=ug(w) − 2(n − 1) t. (3.3)

Now, we have to estimate at first the potential f determined in the
first section. From the definition of u0

g we get

u0
g(q)=n−1(e2−2n

0 q2n −nq2), (3.4)

u0
g(q+e0)−u0

g(e0)=2(n−1) q2+r0(q), r0(q)=e2
0n−1 C

2n

j=3

j!(2n−j)!
n!

(e−1
0 q)j.

(3.5)

From (3.4) we obtain

“u0
g(q+e0)=2(e2 − 2n

0 (q+e0)2n − 1 − (q+e0))=2(2(n − 1) q+r1(q)),

r1(q)=e0 C
2n − 1

j=2
C j

2n − 1(e−1
0 q) j.

(3.6)

As a result

f(qx+e0, qy+e0)=(“u0
g(qx+e0) − “u0

g(qy+e0))(qx − qy)

=2(r1(qx) − r1(qy)(qx − qy)+4(n − 1)(qx − qy)2.

Hence

|f(qx+e0, qy+e0)|

[ 2[(|qx | r1(|qx |)+|qy | r1(|qy |))+(|qy | r1(|qx |)+|qx | r1(|qy |)]

+8(n − 1)(q2
x+q2

y).

From the inequality

a jc+c ja [ (a+c) j+1 [ 2 j+1(a j+1+c j+1), a, c \ 0,

we derive

|f(qx+e0, qy+e0)| [ [v−(qx)+v−(qy)],

v−(q)=8e2
0 C

2n − 1

j=2
2 j+1C j

2n − 1 |e−1
0 q| j+1+8(n − 1) q2.

(3.7)
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It is easy to check that the contribution of the pair potential to the
right-hand side of (2.3) for Ug is expressed through the function

v−(w)+q2+2(o − 1
2) w2(t), v−(w)=b F

t

0
v−(w(y)) dy.

We have to estimate the contribution to (2.3) of U −

g. Let dY3
=

d|y1 − y2|, 1d|y1 − y3|, 1 then

|WŒ(qX1
+e0; qX2+e0

)| [ 25 C
y1 ¥ X1

C
y2, y3 ¥ X2

dY3
(q2

y1
+q2

y2
+q2

y3
)

[ 26 C
y1 ¥ X1

C
y2 ¥ X2

(q2
y1

+q2
y2

) C
y3

dY3

[ 27d C
y1 ¥ X1

C
y2 ¥ X2

d|y1 − y2|, 1(q2
y1

+q2
y2

).

Hence, from the last inequalities it follows that (2.3) holds for Ug with

Y(|x|)=Y0(|x|)+2d|x|, 1,

v(w)=v−(w)+q2+(2o − 1) w2(t)+27db F
t

0
w2(y) dy.

Proof of Lemma 2.1. For the second derivative of the potential u0
g

we have the following equalities

“
2u0

g(q)=2((2n − 1) e2 − 2n
0 q2n − 2 − 1),

“
2u0

g(q+e0)=2((2n − 1) e2 − 2n
0 (q+e0)2n − 2 − 1)

=4(n − 1)+2r2(q), r2(q)= C
2n − 2

j=1
C j

2n − 2(e−1
0 q) j. (3.8)

Since polynomials rs, s=0, 1, 2 in (3.5), (3.6), and (3.8) tend to zero in the
limit of infinite g the functions ug, ūg(w), v converge to quadratic functions
in q2, w in the limit.

The function ūg(w) is uniformly bounded in g ¥ [1, .] in Br

|ūg(w)| [ Q̄(r), w ¥ Br,

where Q̄(r) is a polynomial in r depending, also, on t. This inequality is
easily obtained taking into account that rs, s=0, 1, 2 are positive polyno-
mials in |q| and e−1

0 . As a result

sup
g \ 1

I−1
gr [ ebQ̄(r) 1F

Br

P0(dw)2
−1

< .. (3.9)
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From the definition of ug(w) we get

u+(w)=u+
0 (q)+u+

1 (w(t))+F
t

0
u+

2 (w(y)) dy,

u+
0 (q)=[u0

g(q+e0)−u0
g(e0)]−3e−2

0 q2,

u+
1 (q)=1o−

1
2
2 [u0

g(q+e0)−u0
g(e0)]−3e−2

0 (2o−1) q2,

u+
2 (q)=5−

1
2

“
2u0

g(q+e0)+
b

4
(“u0

g)2(q+e0)6−e−2
0 b(27q2d+v−(q))−2(n−1).

Then (2.7) yields

Ig(g) [ ||e−tbu+
2 ||. ||e−bu+

1 ||. ||e−bu+
0 ||1, (3.10)

I −

g(g) [ ||e−tbu+
2 ||. ||e−bu+

1 ||. ||e−b(u+
0 − Q0

g)||1. (3.11)

A real line is represented as a union of three sets:

q \ 0, q [ − 2e0, |q| [ 2e0.

Then every norm in the last inequalities is less than the sum of the norms
with the functions restricted to these three sets. In the first set the functions
given by (3.5) and (3.6) are positive and all the coefficients before q j, j > 1
in their expressions are greater than the corresponding coefficients in the
rest of the function in the expressions of u+

s , hence, for sufficiently large g
the functions u+

s are bounded from below by a positive quadratic polyno-
mial. In Q0

g the term linear in |q| does not depend on g and is majorized by
this polynomial. As a result the three norms are bounded in g in the first
set. The second set is transformed into the first by translating the variables
by − 2e0 and changing their signs. This transformation does not change the
functions in the square brackets in the expressions for u+

s , so, the three
norms, also, are bounded in the second set. The first two norms are
bounded in g in the third set since all the functions are either positive or
depend on |q|

e0
. Hence the first two norms are bounded in g on a whole line.

Now, we have to deal with the third norm in (3.10) and (3.11), i.e., the
corresponding integrals.

In the third set we rescale the variable in it by e0. Then

u0
g(e0q+e0) − u0

g(e0)=e2
0h(q), h(q)=n−1[n − 1+(q+1)2n − n(q+1)2],

Q0
g(e0q)=e0

2
3 |q| |q+2|.
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The third set is mapped into interval [− 2.2] and the two integrals over this
set is multiplied by e0. The last function in the expression for the rescaled
u+

0 is bounded in the set in q and g. The non-negative function h has two
zeros at the points y1=0, y2=−2. In a sufficiently small corresponding
neighborhoods (intervals) Ys={q: |q − ys | [ s

−

2 }, sŒ ° 1, s=1, 2, of the
points it is bounded from below by a positive quadratic polynomial
a(q − ys)2 since all the coefficients before (q − ys)2 in other terms in its
Taylor expansions are less then s

−

2 ° 1. In the intervals Ys we have
Q0

g(e0q) [ se0, where s=3
4 sŒ. So, the integral in Ys, corresponding to the

third norms in (3.10) and the integral in Ys, corresponding to the third
norm in (3.11), multiplied by exp{ − bse0} are less than

e0C F
q ¥ Ys

e−e2
0ab(q − ys)2

[ e0C F e−e2
0ab(q − ys)2

dq=C F e−abq2
dq, s=1, 2,

where C=e
4
3 corresponds to the contribution of the last term in the

expression for u+
0 .

In the complement to Ys the third norms are less than
2Ce0 exp{ − aŒe2

0+16b

3 e0} [ CŒ. Hence, the third norm in (3.10) is bounded
in g and the third norm in (3.11) is bounded by

Cebse0 F e−abq2
dq+CŒ.

Since s is arbitrary small we conclude that Lemma 2.1 is true.

Proof of (2.7). From the Feynman–Kac and Lie–Trotter formulas
we derive

It(F | v)= lim
n Q .

It(F | v, n),

It(F | v, n)=F dq F0(q) F dq1 · · · dqn p tn − 1

0 (q − q1) e tn − 1v(q1)

× D
n

j=2
p tn − 1

0 (qj − qj − 1) e tn − 1v(qj)F0(qn),

where

p t
0(q)=(`4pt)−1 e

−q2

4t .
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Now, lets apply the generalized Holder inequality for a measure m on arbi-
trary measure space (the usual Holder inequality and induction are used)

F D
n

j=1
fj dm [ D

n

j=1

5F |fj |n dm6
1
n

,

taking Rn+1 as the measure space and putting fj(q, q1,..., qn)=e
t
n v(qj),

dm(q, q1,..., qn)

=|F0(q)| dq dq1 · · · dqn p tn − 1

0 (q − q1) D
n

j=2
p tn − 1

0 (qj − qj − 1) |F0(qn)|.

From the semigroup property of p t
0 it follows that

It(F | v, n)

[ D
n − 1

j=1

5F dq |F0(q)| F dq1 dq2 p t
j
n

0 (q − q1) e tv(q1) p t
n − j

n
0 (q1 − q2) |F0(q2)|6

1
n

×5F dq |F0(q)| F p t
0(q − qŒ) e tv(qŒ) |F0(qŒ)| dqŒ6

1
n

[ ||e tv||. F dq dqŒ |F0(q)| p t
0(q − qŒ) |F0(qŒ)|

[ ||e tv||. ||F0||. F dq |F0(q)| F p t
0(q − qŒ) dqŒ

This concludes the proof of (2.7).

4. SUPERSTABILITY BOUND AND ITS PROPERTIES

In this section we prove Theorems 2.2 and 2.3. We start from Theorem 2.2.
Let’s put as in ref. 11

[j]={x ¥ Zd : |x|=max
s

|x s| [ lj}, kj=k(lj).

There are constants A, B and the integer P0 in ref. 11. We put A=2e,
B=0, P0=0 here. The last condition is a consequence of our choice of
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the sequence lj which satisfies in ref. 16 the more general condition

: lj+1

lj
− (1+2a) : < a, j \ P0.

We’ll assume that instead of (2.2) the following condition holds

U− (wX)=U(wX) − U+(wX) \ C
x ¥ X

v(wx), (4.1)

and we’ll prove the superstability bound

rL(wX) [ exp 3− b 5U+(wX)+ C
x ¥ X

(1 − 3e) v(wx)6+c0 |X|4 .

(4.1) implies the following change: the new potential energy, measure P0,
and correlation functions are connected with the old corresponding quan-
tities by subtracting the sum

C
x ¥ L

[u−(wx) − v(wx)],

multiplying by exp{ − b[u−(w) − v(w)]} and exp{;x ¥ L [u−(wx) − v(wx)]}.
respectively.

Let’s put n2(x)=v(wx),

R0
P=3wL: C

x ¥ [s]
n2(x) [ ksVs, s \ P4 ,

Rq=3wL: C
x ¥ [q]

n2(x) \ kqVq, C
x ¥ [q+1]

n2(x) [ kq+1Vq+1
4

r̃L(wL)=ebU+(wL)rL(wL).

Superstabilty bound (2.4) is derived from the following two bounds
which coincide with the bounds (2), (4) from ref. 16. This coincidence is the
most important fact for our proof

r̃Œ(wX)=r̃L(wX | R0
P) [ CŒe−b(1 − ||Y||1) v(wx)r̃L(wX0x), (4.2)

r̃œ(wX)=r̃L(wX | (Wg)L 0R0
P) [ C

s \ P
e−(beks+1Vs+1 − DœVs+1)

× exp 3− b C
x ¥ [s+1] 5 X

(1 − 3e) v(wx)4 r̃L(wX0[s+1]), r̃L(”)=1,
(4.3)
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where r̃Œ, r̃œ is obtained by inserting qR0
P

(characteristic function of R0
P),

1 − qR0
P
, respectively, into the integral defining r̃L and

CŒ=eb(DŒ+1
2

||Y||1 v̄r) 1F
Br

e−bū(w)P0(dw)2
−1

,

ebDœ=CŒe−bDŒ 11+F eb(1 − 3e) v(w)P0(dw)2 .

The constant DŒ is determined in Proposition 4.1.
The proof of (4.2) and (4.3) relies on the following lemma and proposi-

tion in which the number P depends on e only for Y with an infinite support
(Lemma 2.4 from ref. 11) since lP+k − lP=(1+2a)P [(1+2a)k − 1], k \ 1,
tends to infinity for growing P. If interaction has a finite support then P
depends on its radius.

Lemma 4.1. Let the conditions of Theorem 2.2 be satisfied and the
number P is such that

C
|x| \ lP+1 − lP

Y(|x|) [ 2−1e,

C
k \ 1

[Y(lP+k+1 − lP+1) − Y(lP+k+2 − lP+1)] kk+P+2Vk+P+2 [ 2−1e,

kP \ (1+3a)d.

Then for q \ P and wL ¥ Rq the following inequality holds

C
x ¥ [q+1], y ¨ [q+1]

Y(|y − x|)[n2(x)+n2(y)] [ e C
x ¥ [q+1]

n2(x). (4.4)

For finite-range interactions the conditions of Lemma 4.1 are obvious
for arbitrary small e. For infinite-range interactions they have to be proved
for such the e (see Lemma 2.4 in ref. 16).

Proposition 4.1. For wL ¥ R0
P the following inequality is true

C
x ¨ [P]

Y(|x|) n2(x) [ DŒ − kPVPY(0),
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where

DŒ=Y(0) kPVP+(1+3a)d+k C
l \ lP

[Y(l) − Y(l+1)] k(l)(l+1)d.

It’s clear that the last condition in Lemma 4.1 is satisfied for
P \ 2 dk−1. The proof of (4.2) and (4.3) relies, also, on the inequalities
which are not used in ref. 11

U(wL) − U+(wX)+U(w −

x)

\ U− (wx)+[U(w −

x, wL0x) − U+(wX0x)]

+W− (wx; wL0x) − W(w −

x; wL0x), (4.5)

U(wL) − U+(wX)+U(w −

[s+1])

\ U− (w[s+1])+[U(w −

[s+1], wL0[s+1]) − U+(wX0[s+1])]

+W− (w[s+1]; wL0[s+1]) − W(w −

[s+1]; wL0[s+1]). (4.6)

These inequalities will be proved in the end of the section.
For the proof of (4.2) one has to put x=0 and to estimate the poten-

tial energy W(wx; wL0x1
) on R0

P with the help of Proposition 4.1 (Y is
decreasing)

2W(wx; wL0x) [ C
y

Y(|y|)[v(wx)+v(wy)]

[ ||Y||1 v(wx)+Y(0) C
y ¥ [P]

v(wy)+ C
y ¨ [P]

Y(|y|) v(wy)

[ ||Y||1 v(wx)+DŒ (4.7)

Then one has to separate wx from the rest of variables, introduce a
new variable w −

x ¥ Br, add and subtract W(wx; wX0x). In order to obtain
(4.2) it is necessary to integrate by P0(w −

x), also, over the set Br and apply
the inequality derived from the regularity condition

F
Br

e−bU(wX)P0(dwX) \ 5F
Br

e−bū(w)P0(dw)6
|X|

(4.8)

The applied inequality is given by

U(wX) [ C
x ¥ X

ū(wx). (4.9)
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The inequality is derived after applying |X| − 1 times the equalities,
following from the regularity condition (2.3)

U(wx, wX) [ U(wx)+U(wX)+|W(wx; wX)|

[ U(wx)+U(wX)+||Y||1 v(wx)+ C
y ¥ X

Y|x − y|v(wy),

C
x ¥ X

C
y ¥ XŒ ı X

Y|x − y|v(wy) [ ||Y||1 C
y ¥ XŒ

v(wy).

From (4.8) it follows that

r̃Œ(wX) [ e−b(DŒ+1
2

||Y||1 v̄r)CŒZ−1
L F

Br

e−bU(wŒx)P0(dw −

x)

× F
R0

P

exp{ − b[U(wL) − U+(wX)]} P0(dwL0X)

From Proposition 4.1, Eq. (4.7) for W− (wx; wL0x) and W(w −

x; wL0x),
(4.4) and the inequality U− (w) \ v(w) we obtain, taking the maximum of
v(w −

x) in Br

r̃Œ(wX) [ CŒe−b(1 − ||Y||1) v(wx)Z−1
L F

Br

P0(dw −

x)

× F
R0

P

exp{ − b[U(w −

x, wL0x) − U+(wX0x)]} P0(dwL0X).

Enlarging the domain of integration to R |L0X|+1 we obtain (4.2).
A proof of (4.3) is based on an application of Lemma 4.1. But, at first,

we have to introduce new variables w −

[s+1], w −

x ¥ Br.
From Lemma 4.1, (4.6), (4.8) and the inequality U− (w[s+1]) \

;x ¥ [s+1] v(wx) we derive ([s+1] … L)

r̃œ(wX)

[ Z−1
L C

s \ P
(CŒe−bDŒ − b

1
2

||Y||1 v̄r) |[s+1]| F
B|[s+1]|

r

P0(dw −

[s+1]) exp{ − bU(w −

[s+1])}

× F
Rs

exp{ − b[U(wL) − U+(wX)]} P0(dwL0X)
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[ Z−1
L C

s \ P
(CŒe−bDŒ − b

b

2
||Y||1 v̄r) |[s+1]| exp 3− b C

x ¥ [s+1] 5 X
v(wx)4

× F
B|[s+1]|

r

P0(dw −

[s+1]) F exp{ − b[U(w −

[s+1], wL0[s+1]) − U+(wX0[s+1])]}

× exp 3b

2
C

x ¥ [s+1], y ¨ [s+1]
Y(|x − y|)[v(wx)+v(wy)]4

× exp 3b

2
C

x ¥ [s+1], y ¨ [s+1]
Y(|x − y|)[v(w −

x)+v(wy)]4 P0(dwL0[s+1]0X)

×1F e−b(1 − 3e) vg(w)P0(dw)2
|[s+1]0X|

.

Now, the following inequalities can be applied

exp 3b

2
C

x ¥ [s+1], y ¨ [s+1]
Y(|x − y|)[v(w −

x)+v(wy)]4

[ exp 3b

2
C

x ¥ [s+1], y ¨ [s+1]
Y(|x − y|)[v(wx)+v(wy)]4

× exp 3b

2
C

x ¥ [s+1]
Y(|x − y|) v(w −

x)4

[ exp 3b

2
C

x ¥ [s+1], y ¨ [s+1]
Y(|x − y|)[v(wx)+v(wy)]4

× exp 3b

2
|[s+1]| ||Y||1 v̄r

4 .

As a result

r̃œ(wX) [ Z−1
L C

s \ P
eb | |[s+1]| Dœ exp 3− b 5 C

x ¥ [s+1]
(1 − 3e) v(wx)+eks+1V[s+1]

64

× F P0(dw −

[s+1]) F exp{ − b[U(w −

[s+1], wL0[s+1]) − U+(wX0[s+1])]}

× P0(dwL0[s+1]0X).

Here we added and subtracted the term e ;x ¥ [s+1] v(wx) under the
sigh of the exponent. Here the set L0[s+1]0X coincides with L0X for
[s+1] ı X.
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So, inequalities (4.2) and (4.3) are proven.
From them it follows by induction that

r̃L(wX) [ exp 3− b C
x ¥ X

(1 − ||Y||1 − 3e) v(wx)+F4 , (4.10)

where

F=ln 11+CŒ+ C
s \ P

e−beks+1Vs+1+DœVs+1 2 . (4.11)

Indeed, let’s assume that (4.10) holds for XŒ … X then (4.2) and (4.3) result
in (F is positive, |[P+1]| > 1)

r̃L(wX)=r̃Œ(wX)+r̃œ(wX)

[ exp 3− C
x ¥ X

b(1 − ||Y||1 − 3e) v(wx)4

×5CŒe (|X| − 1) F+ C
s \ P

e−beks+1Vs+1+DœVs+1e |X0[s+1]| F6

[ exp 3− b C
x ¥ X

(1 − ||Y||1 − 3e) v(wx)4 e (|X| − 1) F

×5CŒ+ C
s \ P

e−beks+1Vs+1+DœVs+1e (1 − |[s+1])| F6

[ exp 3− b C
x ¥ X

(1 − ||Y||1 − 3e) v(wx)4 e (|X| − 1) F

×5CŒ+ C
s \ P

e−beks+1Vs+1+DœVs+16 .

(4.10) yields the needed superstability bound

r̃L(wX) [ exp 3− C
x ¥ X

[b(1 − 3e) v(wx) − c0]4 , c0=||Y||1 kPVP+F.
(4.12)

Indeed, let’s put at first v(wx) [ kPVP for each x ¥ X. Then (4.12)
follows immediately from (4.10).

If for some x, v(wx) \ kPVP, then putting x=0 (by translation), using
(4.3) (r̃Œ=0) and induction we derive assuming (4.12) holds for XŒ … X
(c0 > 0, |[P+1]| > 1)
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r̃L(wX) [ C
s \ P

exp 3−b C
x ¥ X

(1−3e) v(wx)4 ec0 |X0[s+1]|e−beks+1Vs+1+DœVs+1

[ exp 3− C
x ¥ X

b(1−3e) v(wx)4 e(|X|−1) c0 C
s \ P

ec0(1 −|[s+1]|)e−beks+1Vs+1+DœVs+1

[ exp 3− C
x ¥ X

b(1−3e) v(wx)4 ec0(|X|−1)+F.

To prove (2.5) and (2.6) we have to take into account (4.10)–(4.12),
Remark 4.1, put t=ebDŒ, c0=||Y||1 VPkP and apply the bound (1+I)Vj

[ (2I)Vj, where I is the integral in the expression for Dœ.
Proofs of Lemma 4.1 and Proposition 4.1 are obtained by standard

arguments from ref. 11 which have to take into account the following gen-
eralization of Lemma 2.3 from ref. 11.

Proposition 4.2. If the conditions of Theorem 2.2 are satisfied then

(a)
kj+1Vj+1

kjVj
[ (1+2a)d+k [ (1+3a)d+k

(b)
kj+2Vj+2 − kjVj

kjVj
[ (1+2a)2(d+k) − 1 [ (1+3a)2(d+k) − 1,

(c)
kq+s+2Vq+s+2

k(lq+s+1 − lq+1+1)(2lq+s+1 − 2lq+1+3)d [ ((1+2a)(1+a) a−1)k+d.

[ ((1+3a)(1+a) a−1)k+d.

The proofs (a) and (b) are quite obvious since

Vj+1

Vj
[ 1 lj+1

lj

2d

=(1+2a)d

In the proof of (c) the following inequalities are exploited

lk
q+s+2

lk
q+s+1 − lk

q+1+1
[ 1 lq+s+2

lq+s+1 − lq+1

2k

=(1+2a)k (1 − (1+2a)−s)−k

[ (1+2a)k (1 − (1+a)−1)−k=((1+2a)(1+a) a−1)k,

(1+2lq+s+2)d

(2lq+s+1 − 2lq+1+3)d [
ld

q+s+2

(lq+s+1 − lq+1+1)d [
ld

q+s+2

(lq+s+1 − lq+1)d

[ ((1+2a)(1+a) a−1)d.
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Proof of (4.5). From the defintion of U− , W− , W+ we derive

U(wL) − U+(wX)=U− (wL)+U+(wL0X)+W+(wX; wL0X)

=U− (wx)+U− (wL0x)+W− (wx; wL0x)+U+(wL0X)

+W+(wX; wL0X).

The equality leads to

U(wL) − U+(wX) − W− (wx; wL0x)+U(w −

x)

=U− (wx)+U− (w −

x, wL0x)+U+(w −

x, wL0X) − W− (w −

x; wL0x)

− W+(w −

x; wL0X)+W+(wX; wL0X)

\ U− (wx)+U− (w −

x, wL0x)+U+(w −

x, wL0X)

− W− (w −

x; wL0x) − W+(w −

x; wL0X)+W+(wX0x; wL0X)

=U− (wx)+U− (w −

x, wL0x)+U+(w −

x, wL0X) − W− (w −

x; wL0x)

− W+(w −

x; wL0x)+W+(wX0x; w −

x, wL0X).

On the first step (second line)we merely used the definition of U− , W− , W+

and the equality U+(w)=0. On the second step we applied the inequality

W+(wX; wL0X) \ W+(wX0x; wL0X)

and on the third step we used the equality

W+(wX0x; w −

x, wL0X)=W+(wX0x; wL0X)+W+(wX0x; w −

x)

(4.5) follows from the equality

U+(w −

x, wL0x) − U+(wX0x)=U+(w −

x, wL0X)+W+(wX0x; w −

x, wL0X).

Proof of (4.6). Let [s+1] ı X. For this case we merely repeat the
above arguments. From the definition of U− , W− , W+ we derive

U(wL) − U+(wX)=U− (wL)+U+(wL0X)+W+(wX; wL0X)

=U− (w[s+1])+U− (wL0[s+1])+W− (w[s+1]; wL0[s+1])

+U+(wL0X)+W+(wX; wL0X).
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The equality leads to

U(wL) − U+(wX) − W− (w[s+1]; wL0[s+1])+U(w −

[s+1])

=U− (w[s+1])+U− (w −

[s+1], wL0[s+1])+U+(w −

[s+1], wL0X)

− W− (w −

[s+1]; wL0[s+1]) − W+(w −

[s+1]; wL0X)+W+(wX0[s+1]; wL0X)

\ U− (w[s+1])+U− (w −

[s+1], wL0[s+1])+U+(w −

[s+1], wL0X)

− W− (w −

[s+1]; wX0[s+1]) − W+(w −

X0[s+1]; wL0[s+1])

+W+(wX0[s+1]; w −

[s+1], wL0X).

Here we used the definition of U− , W− , W+ , the inequality

W+(wX; wL0X) \ W+(wX0[s+1]; wL0X),

the equality

W+(wX0[s+1]; w −

[s+1], wL0X)=W+(wX0[s+1]; wL0X)+W+(wX0[s+1]; w −

[s+1])

and the relation (wX0[s+1], wL0X)=wL0[s+1]. To obtain (4.6) is only neces-
sary to take into account the equality

U+(w −

[s+1], wL0[s+1]) − U+(wX0[s+1])

=U+(w −

[s+1], wL0X)+W+(wX0[s+1]; w −

[s+1], wL0X).

Let [s+1]0[s+1] 5 X ] ”. By the similar arguments as above we derive

U(wL)−U+(wX)

=U−(wL)+U+(wL0X)+W+(wX; wL0X)

=U−(w[s+1])+U−(wL0[s+1])+W−(w[s+1] ; wL0[s+1])

+U+(wL0X)+W+(wX; wL0X) \ U−(w[s+1])+U−(wL0[s+1])

+W−(w[s+1] ; wL0[s+1])+U+(wL0([s+1] 2 X))+W+(wX0[s+1] ; wL0([s+1] 2 X)).

The inequality leads to

U(wL) − U+(wX) − W− (w[s+1]; wL0[s+1])+U(w −

[s+1])

\ U− (w[s+1])+U− (w −

[s+1], wL0[s+1]) − W− (w −

[s+1]; wL0[s+1])

+U+(w −

[s+1], wL0([s+1] 2 X)) − W+(w −

[s+1]; wL0([s+1] 2 X))

+W+(wX0[s+1]; wL0([s+1] 2 X))=U− (w[s+1])+U− (w −

[s+1], wL0[s+1])

− W− (w −

[s+1]; wL0[s+1])+U+(w −

[s+1], wL0([s+1] 2 X))

− W+(w −

[s+1]; wX0[s+1], wL0([s+1] 2 X))+W+(wX0[s+1]; w −

[s+1], wL0([s+1] 2 X)).
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Now we have to account the equality

U+(w −

[s+1], wL0[s+1]) − U+(wX0[s+1])

=U+(w −

[s+1], wL0([s+1] 2 X))+W+(wX0[s+1]; w −

[s+1], wL0([s+1] 2 X)).

and the relation

L0[s+1]=X0[s+1] 2 L0([s+1] 2 X).

(4.6) is proven. This concludes the proof of Theorem 2.2.

5. PEIERLS ARGUMENT AND ASYMPTOTICS OF f

We start the section from proving Lemma 1.1.
The set of all configurations qL can be described by the set of configu-

rations sL, as in the Ising model. The set of all spin configurations can be
classified by different contours c(sL), i.e., connected union of faces of unit
cubes, centered at lattice sites, which is a boundary of a related connected
union of the cubes. The main idea is to consider contours cx, y, enclosing x,
separating it from y and with adjacent cubes, containing spins of different
signs from the opposite sides. So inside cx, y there are spins of both signs.
The contours may be non-closed ending on the boundary “L. There may be
several such the contours in a configuration. In this case the smallest
contour is chosen. We have to estimate the l.h.s. of (1.9) in terms of such
the contours. With this aim we express it as a sum over sL and then trans-
form this sum into the sum over the contours cx, y ¥ L, summing over all
configurations, characterized by the contours. So, at first we have to insert
the equality

1=D
l ¥ L

(q+
l +q−

l )

under the sign of the Gibbs average. As a result

Oq+
x q−

y PL=C
sL

7q+
x q−

y D
l ¥ L

q sl
l
8

L

= C
cx, y ¥ L

C
sL: c(sL)=cx, y ¥ L

7q+
x q−

y D
l ¥ L

q sl
l
8

L

[ C
cx, y ¥ L

7q+
x q−

y D
x, xŒ ¥ Nc

q+
x q−

xŒ
8

L

.
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Hence

Oq+
x q−

y PL [ C
cx, y ¥ L

7 D
x, xŒ ¥ Nc

q+
x q−

xŒ
8

L

Enlarging the range of the summation to all closed contours c we obtain

Oq+
x q−

y PL [ C
c

7 D
x, xŒ ¥ Nc

q+
x q−

xŒ
8

L

From (1.8) it follows that

Oq+
x q−

y PL [ C
c

e−E |Nc | [ C
c

e−2E |c|

= C
n1 \ 1,..., nd \ 1

e−2E(;d
s=1 ns) 1 C

c: |c|s=ns

12=(2
1

d − 1 3)−d 1 C
n \ 1

(3e−2E)n n
1

d − 1 2d

,

where |c|s is a number of faces of c, orthogonal to sth coordinate axis. Here
we used the inequalities |c|=n1+ · · · +nd,

C
c: |c|s=ns

1 [ D
d

s=1
3ns − 1 |int(c)|, |int(c)| [ D

d

s=1

1ns

2
2

1
d − 1

,

where int(c) is the set of lattice sites inside c (see ref. 17, paragraph 5.3,
Lemmas 5.3.5 and 5.3.6). Lemma (1.1) is true if e−2E [ 1

6 and in this case

aŒ=3(2
1

d − 1 3)−d 1 C
n \ 1

6−n+1n
1

d − 1 2d

, a=2d.

This concludes the proof of the lemma.
(1.11) follows from the inequality

q+(qx) q−(qy) [ exp{Q(qx, qy) − cR2}, R, c > 0, (5.1)

where

Q(qx, qy)=c[(qx − qy)2+4
3 (|q2

x − R2|+|q2
y − R2|)]

It is derived easily from two inequalities by putting R=e0, c=e−1
0 .

q+(qx) q−(qy) [ e−c[R2 − (qx − qy)2], |qx |, |qy | \ 2−1R,

q+(qx) q−(qy) [ e−c[R2 − 4
3

(|q2
x − R2|+|q2

y − R2|)], |qx |, |qy | [ 2−1R.

318 Skrypnik



For |qx | [ R
2 , |qy | \ R

2 the second term in the expression for Q is not less
than cR2.

Proof of Corollary 2.1. We have to establish the asymptotic behav-
ior of f. We have

f(e, z)= C
j \ 0

e−elk
j (1+2lj)d

(2z)(1+2lj)d
. (5.2)

Let’s put z0=22d − d2

k+d |ln 2z|, Lj=(2de)
1

k+d lj. Then, applying the bound
(1+2lj)d[ 2d(1+(2lj)d), we obtain

f(e, z) [ e2d |ln 2z| C
j \ 0

e−e2dlk+d
j +4dld

j |ln 2z|

=e2d |ln 2z| C
j \ 0

e−Lk+d
j +e

−
d

k+d Ld
j z0,

C
Lj [ 1

e−Lk+d
j +e

−
d

k+d Ld
j z0 [ e e

−
d

k+d z0 C
Lj [ 1

1.

For k \ d

C
Lj \ 1

e−Lk+d
j +e

−
d

k+d Ld
j z0 [ e4 − 1

e
−

2d
k+d z2

0 C
j \ 0

e−(Ld
j − 2 − 1

e
−

d
k+d z0)2

=e4 − 1
e

−
2d

k+d z2
0 C

j \ 0
e−(2d

e)

2d
k+d (ld

j − 2 − 1(2d
e

2)
−

d
k+d z0)2

(5.3)

Let’s determine e (see the condition of Theorem 2.1) from the follow-
ing inequality

(1+3a)2(d+k) − 1 [ (2+4a)2(d+k) − 22(d+k)=||Y||−1
1 2−1e,

and put

(1+2a)2(d+k) − 1=eŒ, eŒ=2−2(d+k) − 1 ||Y||−1
1 e.

As a result

ld
j =(1+2a)dj=(1+eŒ)

dj
2(d+k).

If Lj [ 1 then lj [ (2de)− 1
k+d and (1+eŒ)

j
2(d+k) [ (2de)− 1

k+d. So, if Lj [ 1 then

j [ 2(ln(1+eŒ))−1 |ln 2de| [ 2(eŒ)−1 |ln 2de|.
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As a result

C
Lj [ 1

e−Lk+d
j +e

−
d

k+d Ld
j z0 [ ||Y||1 22+2(d+k)e e

−
d

k+d z0e−1 |ln 2de| (5.4)

Now, let’s consider the sum in which Lj \ 1. For eŒ [ 1 and dj \ d+k
we have ld

j \ (1+eŒ)[
dj

2(d+k)
] \ 1+[ dj

2(d+k)] eŒ \ dj
2(d+k) eŒ, where [ dj

2(d+k)] is the
integer part of the number.

Let’s decompose the set {j \ 1+k
d} of summation into the set G and its

compliment Gc,

G=3 j: j [
d+k

d
(eŒ)−1 (2de2)− d

k+d z0
4,

As a result for k \ d we have

C
j \ 0

e−(2d
e)

2d
k+d (ld

j − 2 − 1(2d
e

2)
−

d
k+d z0)2

[ |G|+ C
j [ 1+k

d

1+ C
j ¥ Gc

e−(2d
e)

2d
k+d (jeŒ

d
2(d+k)

− 2 − 1(2d
e

2)
−

d
k+d z0)2

[ |G|+11+
k
d
2+2 C

j \ 0
e−(2e)

2d
k+d j2(eŒ

d
4(d+k)

)2

[ |G|+11+
k
d
2+2 C

j \ 0
e−(2e)

2d
k+d j(eŒ

d
4(d+k)

)2

=|G|+11+
k
d
2+2(1 − e−(2e)

2d
k+d (eŒ

d
4(d+k)

)2
)−1.

This expression grows as e
−2 − 2d

k+d. (5.4-5) prove the first inequality in
Corollary 2.1. The second one follows from (a) and and the last statement
of Theorem 2.2.
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